

Moti	on and Fo	rces in Electric and Magnetic Fields: Set 14
Set	Problem	Solution
14	1a 1b	A magnetic field is a region of space in which a small (test) magnet experiences a force Diagram: fig 4.9, page 52 of Physics in context Year 12 (STAWA publication)
	1c	Stroked wire acts as a bar magnet. Its field enters and leaves the ends of wire which are its poles. The field is always present. Diagram: fig 5.11, page 92 of Physics in context Year 12 (STAWA publication) Current-carrying wire has a field that exists only when the current flows. The field is arranged as concentric or nested cylinders. There are no poles. Diagram: fig 5.20, page 95 of Physics in context Year 12 (STAWA publication)
	1d	Bend the wire into a loop. Diagram: fig 5.21, page 95 of Physics in context Year 12 (STAWA publication)
	2a	Diagram: fig 4.7, page 51 of Physics in context Year 12 (STAWA publication)
	2b	Diagram: fig 4.13, page 53 of Physics in context Year 12 (STAWA publication)
	2c	Diagram: fig 4.12, page 532 of Physics in context Year 12 (STAWA publication)
	2d	
	2e	
	3a	Diagram: fig 5.20, page 95 of Physics in context Year 12 (STAWA publication)
	3b	Diagram: fig 5.21, page 95 of Physics in context Year 12 (STAWA publication)
	4a	The electron's motion is unchanged
	4b	The electron's path becomes an arc of a circle
	5	A has a positive charge B is neutral C has a negative charge
	6a	F = qvB
	6b	F is always at right angles to v. This is a requirement for circular motion.
	6c	$F_{B} = qvB$ $F_{c} = \frac{mv^{2}}{r}$ $\therefore qvb = \frac{mv^{2}}{r}$ $r = \frac{mv}{qB}$ where $v = \frac{2\pi r}{T}$

?

	Motion and Forces in Electric and Magnetic Fields: Set 14				
Set	Problem	Solution			
14	6c	$\therefore r = \frac{m\left(\frac{2\pi r}{T}\right)}{qB}$ $r = \frac{2\pi rm}{qBT}$ $T = \frac{2\pi rm}{qBr}$ $= \frac{2\pi m}{qB}$ where $f = \frac{1}{T}$			
		$\therefore f = \frac{qB}{2\pi m}$			
	6d	The frequency gives no information about speed; but it allows the field strength to be determined if other variables (q, m) are known or can be measured.			
	7	F _B = qvB F _c = $\frac{mv^2}{r}$ \therefore qvB = $\frac{mv^2}{r}$ $m = \frac{rqB}{v}$ to get past the closest edge, r must be $\left(\frac{0.99}{2}\right)$ m $m = \frac{\left(\frac{0.99}{2}\right)(1.6 \times 10^{-19})(10)}{5 \times 10^6}$ kg = 1.58×10^{-26} kg to get inside the farthest edge, r must be $\left(\frac{1.01}{2}\right)$ m $m = \frac{\left(\frac{1.01}{2}\right)(1.6 \times 10^{-19})(10)}{5 \times 10^6}$ kg = 1.62×10^{-26} kg			
	8a	$F_{B} = qvB$ $F_{c} = \frac{mv^{2}}{r}$ $\therefore qvB = \frac{mv^{2}}{r}$ $r - \frac{mv}{qB}$ $= \frac{(1.67 \times 10^{-27})(1.00 \times 10^{4})}{(1.6 \times 10^{-19})(2.50 \times 10^{-6})}$ $= 41.8 \text{ m}$			

Set	Problem	Solution
		Solution
14	8b	$r = \frac{mv}{m}$
		qB
		where
		$v = \frac{2\pi r}{T}$
		$V = \frac{T}{T}$
		$2\pi r$
		$\therefore r = \frac{m \frac{2\pi r}{T}}{qB}$
		qB
		$r = \frac{2\pi rm}{a RT}$
		$T = \frac{2\pi rm}{r Rr}$
		$I = \frac{1}{qBr}$
		$=\frac{2\pi m}{2\pi m}$
		$=\frac{1}{qB}$
		$=\frac{2\pi((1.67\times10^{-27}))}{(1.6\times10^{-19})(1.00\times10^{-4})}$
	-	$= 6.28 \times 10^{-3} \text{ s}$
	8c	$T = \frac{2\pi m}{r}$
		qB
		Thus, T is inversely proportional to B
	8d	i.e. as B increases, T decreases. T is independent of v
	ou	i.e. changing v has no effect on T.
	9a	B_1 must be oriented out of the page
		B_2 must be oriented into the page
	9b	$F_{\rm B} = qvB$
		$=(1.6\times10^{-19})(1.5\times10^{6})(0.1)$ N
		$= 2.4 \times 10^{-14} \text{ N}$
	9c	The outer electrons are in the field for a longer time than the inner electrons; hence the
		magnetic force changes the momentum of the outer electrons more than the inner ones.
	9d	The field would have to vary in direction and strength; into the page and strongest at the
		top edge, decreasing to zero at the centre, and then increasing to out of the page and strongest at the bottom.
	10a	$F_{\rm B} = qvB$
	100	
		$F_c = \frac{mv^2}{r}$
		$\therefore qvB \times \frac{mv^2}{r}$
		r r
		$\frac{\mathbf{q}}{\mathbf{q}} = \frac{\mathbf{v}}{\mathbf{v}}$
		m rB

SCIENCE TEACHERS' ASSOCIATION OF WESTERN AUSTRALIA EXPLORING PHYSICS STAGE 3

Moti	Motion and Forces in Electric and Magnetic Fields: Set 14				
Set	Problem	Solution			
14	10b	$\frac{q}{m} = \frac{v}{rB}$ where $r_1 = 2.9 \times 10^{-2}$ m and $r_2 = 3.8 \times 10^{-2}$ m $\left(\frac{q}{m}\right)_1 = \frac{2.2 \times 10^5}{(2.9 \times 10^{-2})(0.12)}$ $= 6.3 \times 10^7 \text{ C kg}^{-1}$ $\left(\frac{q}{m}\right)_2 = \frac{2.2 \times 10^5}{(3.8 \times 10^{-2})(0.12)}$ $= 4.8 \times 10^7 \text{ C kg}^{-1}$			
	10c	These ions have the same charge so any difference in their $\frac{q}{m}$ value is due their atomic masses. Their atomic masses have the ratio $4:3 = 1.3$ Their $\frac{q}{m}$ values have the ratio $\frac{6.3}{4.8} = 1.3$ So yes, they could be the isotopes that produce these lines.			
	10d	$\begin{split} \frac{q}{m} &= \frac{v}{rB} \\ m &= \frac{qrB}{v} \\ where r_{1} = 6.2 \times 10^{-2} \text{ m}, r_{2} = 6.64 \times 10^{-2} \text{ m} \text{ and } r_{3} = 7.01 \times 10^{-2} \text{ m} \\ m_{1} &= \frac{qrB}{v} \\ &= \frac{(1.6 \times 10^{-19})(6.2 \times 10^{-2})(0.12)}{4.5 \times 10^{4}} \text{ kg} \\ &= 2.64 \times 10^{-26} \text{ kg} \\ &= 2.64 \times 10^{-26} \text{ kg} \\ &= \frac{2.64 \times 10^{-27}}{1.67 \times 10^{-27}} \text{ u} \\ &= 16 \text{ u} \\ m_{2} &= \frac{(1.6 \times 10^{-19})(6.64 \times 10^{-2})(0.12)}{4.5 \times 10^{4}} \text{ kg} \\ &= 2.83 \times 10^{-26} \text{ kg} \\ &= \frac{2.84 \times 10^{-26}}{1.67 \times 10^{-27}} \text{ u} \\ &= 17 \text{ u} \\ m_{3} &= \frac{(1.6 \times 10^{-19})(7.01 \times 10^{-2})(0.12)}{4.5 \times 10^{4}} \text{ kg} \\ &= 2.99 \times 10^{-26} \text{ kg} \\ &= \frac{2.99 \times 10^{-26} \text{ kg}}{1.67 \times 10^{-27}} \text{ u} \\ &= 18 \text{ u} \\ \text{The oxygen isotopes therefore have mass numbers 16, 17 and 18. \\ \text{Their formulae are } \frac{16}{8}0, \frac{17}{8}0 \text{ and } \frac{18}{8}0 \end{split}$			

2